Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioresour Bioprocess ; 11(1): 34, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38647614

RESUMEN

Escherichia coli MLB (MG1655 ΔpflB ΔldhA), which can hardly grow on glucose with little succinate accumulation under anaerobic conditions. Two-stage fermentation is a fermentation in which the first stage is used for cell growth and the second stage is used for product production. The ability of glucose consumption and succinate production of MLB under anaerobic conditions can be improved significantly by using acetate as the solo carbon source under aerobic condition during the two-stage fermentation. Then, the adaptive laboratory evolution (ALE) of growing on acetate was applied here. We assumed that the activities of succinate production related enzymes might be further improved in this study. E. coli MLB46-05 evolved from MLB and it had an improved growth phenotype on acetate. Interestingly, in MLB46-05, the yield and tolerance of succinic acid in the anaerobic condition of two-stage fermentation were improved significantly. According to transcriptome analysis, upregulation of the glyoxylate cycle and the activity of stress regulatory factors are the possible reasons for the elevated yield. And the increased tolerance to acetate made it more tolerant to high concentrations of glucose and succinate. Finally, strain MLB46-05 produced 111 g/L of succinic acid with a product yield of 0.74 g/g glucose. SYNOPSIS.

2.
bioRxiv ; 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38405924

RESUMEN

Microbes encounter a myriad of stresses during their life cycle. Dysregulation of metal ion homeostasis is increasingly recognized as a key factor in host-microbe interactions. Bacterial metal ion homeostasis is tightly regulated by dedicated metalloregulators that control uptake, sequestration, trafficking, and efflux. Here, we demonstrate that deletion of the Bacillus subtilis yqgC-sodA (YS) complex operon, but not deletion of the individual genes, causes hypersensitivity to manganese (Mn). YqgC is an integral membrane protein of unknown function and SodA is a Mn-dependent superoxide dismutase (MnSOD). The YS strain has reduced expression of two Mn efflux proteins, MneP and MneS, consistent with the observed Mn sensitivity. The YS strain accumulated high levels of Mn, had increased reactive radical species (RRS), and had broad metabolic alterations that can be partially explained by the inhibition of Mg-dependent enzymes. Although the YS operon deletion strain and an efflux-deficient mneP mneS double mutant both accumulate Mn and have similar metabolic perturbations they also display phenotypic differences. Several mutations that suppressed Mn intoxication of the mneP mneS efflux mutant did not benefit the YS mutant. Further, Mn intoxication in the YS mutant, but not the mneP mneS strain, was alleviated by expression of Mg-dependent, chorismate-utilizing enzymes of the menaquinone, siderophore, and tryptophan (MST) family. Therefore, despite their phenotypic similarities, the Mn sensitivity in the mneP mneS and the yqgC-sodA deletion mutants results from distinct enzymatic vulnerabilities.

3.
Bioresour Technol ; 363: 127907, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36087655

RESUMEN

Engineering microbial cell factories to convert CO2-based feedstock into chemicals and fuels provide a feasible carbon-neutral route for the third-generation biorefineries. Ethanol became one of the major products of syngas fermentation by engineered acetogens. The key building block chemical 3-hydroxypropionic acid (3-HP) can be synthesized from ethanol by the malonyl-CoA pathway with CO2 fixation. In this study, the effect of two ethanol consumption pathways on 3-HP synthesis were studied as well as the effect of TCA cycle, gluconeogenesis pathway, and transhydrogenase. And the 3-HP synthesis pathway was also optimized. The engineered strain synthesized 1.66 g/L of 3-HP with a yield of 0.24 g/g. Furthermore, the titer and the yield of 3-HP increased to 13.17 g/L and 0.57 g/g in the whole-cell biocatalysis system. This study indicated that ethanol as feedstock had the potential to synthesize 3-HP, which provided an alternative route for future biorefinery.


Asunto(s)
Escherichia coli , Ingeniería Metabólica , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Etanol/metabolismo , Ácido Láctico/análogos & derivados , Malonil Coenzima A/metabolismo
4.
Sheng Wu Gong Cheng Xue Bao ; 38(8): 3099-3109, 2022 Aug 25.
Artículo en Chino | MEDLINE | ID: mdl-36002435

RESUMEN

Microbiology is a key basic professional course for all the students specializing in biology, biotechnology and related majors. To date, microbiology is mainly taught in Chinese within colleges and universities in China. Development of a microbiology course that is taught in English may satisfy the diversified learning needs of the students and promote the "Double First-Class" initiative. We started to teach the microbiology course in English at the East China University of Science and Technology since 2016. This practice was associated with reform and innovation in the teaching methods and contents. The microbiology course taught in English greatly attracted the interest of the attending students and helped improve their professional English learning as well as scientific research. This course provided important support for fostering innovative professional first-class undergraduates under the context of the "Double First-Class" initiative.


Asunto(s)
Aprendizaje , Estudiantes , China , Humanos , Universidades
5.
J Microbiol Methods ; 199: 106537, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35798134

RESUMEN

Marine-derived Bacillus velezensis B-9987 is an important biocontrol bacterium with a broad-spectrum antibacterial effect. The traditional plate counting method is widely used for quantitative detection of viable bacteria and spores but has some disadvantages such as being laborious and time-consuming (at least 24-48 h). This study aimed to develop a new PMA-qPCR method for rapid and accurate detection of viable bacteria and spores of B-9987. The specific primers were designed for qPCR amplification based on the conserved region of the bmmA gene (encoding a malonyl CoA-ACP transacylase) of B-9987. According to the characteristic that propidium monoazide (PMA) dye can distinguish viable and dead bacteria, the optimal PMA concentration of 10 µg/ml and optimal exposure time of 10 min were achieved under PMA treatment conditions. The B-9987 spores' genomic DNA was successfully extracted after the spore coat was removed and spore germination was induced. The quantification limits of the PMA-qPCR method were determined for viable B-9987 bacteria, spores in pure culture, and spores in marine Bacillus wettable powder (marine Bacillus WP) and were 1.5 × 103 CFU/ml, 6.5 × 102 CFU/ml, and 103 CFU/ml, respectively. Compared with the qPCR method, the PMA-qPCR method could sensitively detect viable bacteria in the viable/dead bacterial mixture. In this study, the developed PMA-qPCR method was found to have excellent sensitivity and specificity in the context of a pure culture of B-9987 strain, which could accurately and rapidly detect viable B-9987 bacteria within 3-4 h and viable B-9987 spores in marine Bacillus WP within 4-6 h.


Asunto(s)
Azidas , Bacillus , Bacillus/genética , Bacterias/genética , Viabilidad Microbiana , Propidio/análogos & derivados , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Esporas
6.
Sheng Wu Gong Cheng Xue Bao ; 38(7): 2649-2654, 2022 Jul 25.
Artículo en Chino | MEDLINE | ID: mdl-35871632

RESUMEN

Microbes are involved in every aspect of human life. Microbiology is a mandatory subject at the undergraduate level covering majors including life sciences, pharmacy, medicine, agriculture, forestry and food. Along with internationalization and development of the first-class disciplines, teaching microbiology courses in English is highly valued. Here we discuss how to conduct curriculum reform of microbiology teaching in English, and what are the advantages and challenges when teaching in English. The teaching system can be advanced by enhancing interdisciplinary communication so as to promote study and research for students and teachers. We take this practical exploration as an example to communicate with relevant teachers.


Asunto(s)
Disciplinas de las Ciencias Biológicas , Curriculum , Humanos , Estudiantes
7.
Bioresour Bioprocess ; 9(1): 74, 2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-38647608

RESUMEN

Plant growth-promoting rhizobacteria (PGPR) or Biocontrol strains inevitably encounter heavy metal excess stress during the product's processing and application. Bacillus amyloliquefaciens Bam1 was a potential biocontrol strain with strong heavy metal resistant ability. To understand its heavy metal resistance mechanism, the complete genome of Bam1 had been sequenced, and the comparative genomic analysis of Bam1 and FZB42, an industrialized PGPR and biocontrol strain with relatively lower heavy metal tolerance, was conducted. The comparative genomic analysis of Bam1 and the other nine B. amyloliquefaciens strains as well as one Bacillus velezensis (genetically and physiologically very close to B. amyloliquefaciens) was also performed. Our results showed that the complete genome size of Bam1 was 3.95 Mb, 4219 coding sequences were predicted, and it possessed the highest number of unique genes among the eleven analyzed strains. Nine genes related to heavy metal resistance were detected within the twelve DNA islands of Bam1, while only two of them were detected within the seventeen DNA islands of FZB42. When compared with B. amyloliquefaciens type strain DSM7, Bam1 lacked contig L, whereas FZB42 lacked contig D and I, as well as just possessed contig B with a very small size. Our results could also deduce that Bam1 promoted its essential heavy metal resistance mainly by decreasing the import and increasing the export of heavy metals with the corresponding homeostasis systems, which are regulated by different metalloregulators. While Bam1 promoted its non-essential heavy metal resistance mainly by the activation of some specific or non-specific exporters responding to different heavy metals. The variation of the genes related to heavy metal resistance and the other differences of the genomes, including the different number and arrangement of contigs, as well as the number of the heavy metal resistant genes in Prophages and Genomic islands, led to the significant different resistance of Bam1 and FZB42 to heavy metals.

8.
Synth Syst Biotechnol ; 6(3): 144-152, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34278012

RESUMEN

Syngas, which contains large amount of CO2 as well as H2 and CO, can be convert to acetic acid chemically or biologically. Nowadays, acetic acid become a cost-effective nonfood-based carbon source for value-added biochemical production. In this study, acetic acid and CO2 were used as substrates for the biosynthesis of 3-hydroxypropionic acid (3-HP) in metabolically engineered Escherichia coli carrying heterogeneous acetyl-CoA carboxylase (Acc) from Corynebacterium glutamicum and codon-optimized malonyl-CoA reductase (MCR) from Chloroflexus aurantiacus. Strategies of metabolic engineering included promoting glyoxylate shunt pathway, inhibiting fatty acid synthesis, dynamic regulating of TCA cycle, and enhancing the assimilation of acetic acid. The engineered strain LNY07(M*DA) accumulated 15.8 g/L of 3-HP with the yield of 0.71 g/g in 48 h by whole-cell biocatalysis. Then, syngas-derived acetic acid was used as substrate instead of pure acetic acid. The concentration of 3-HP reached 11.2 g/L with the yield of 0.55 g/g in LNY07(M*DA). The results could potentially contribute to the future development of an industrial bioprocess of 3-HP production from syngas-derived acetic acid.

9.
Mol Microbiol ; 116(3): 729-742, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34097790

RESUMEN

Cell physiology relies on metalloenzymes and can be easily disrupted by imbalances in metal ion pools. Bacillus subtilis requires manganese for growth and has highly regulated mechanisms for import and efflux that help maintain homeostasis. Cells defective for manganese (Mn) efflux are highly sensitive to intoxication, but the processes impaired by Mn excess are often unknown. Here, we employed a forward genetics approach to identify pathways affected by manganese intoxication. Our results highlight a central role for the membrane-localized electron transport chain in metal intoxication during aerobic growth. In the presence of elevated manganese, there is an increased generation of reactive radical species associated with dysfunction of the major terminal oxidase, the cytochrome aa3 heme-copper menaquinol oxidase (QoxABCD). Intoxication is suppressed by diversion of menaquinol to alternative oxidases or by a mutation affecting heme A synthesis that is known to convert QoxABCD from an aa3 to a bo3 -type oxidase. Manganese sensitivity is also reduced by derepression of the MhqR regulon, which protects cells against reactive quinones. These results suggest that dysfunction of the cytochrome aa3 -type quinol oxidase contributes to metal-induced intoxication.


Asunto(s)
Bacillus subtilis/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Transporte de Electrón , Manganeso/metabolismo , Manganeso/toxicidad , Bacillus subtilis/genética , Proteínas Bacterianas/metabolismo , Complejo IV de Transporte de Electrones/genética , Hemo/metabolismo , Respiración , Eliminación de Secuencia
10.
Bioresour Technol ; 336: 125323, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34051572

RESUMEN

Acetate is a potential non-food carbon source for industrial production, coping with the shortage of food-based feedstocks. (R)-3-hydroxybutyric acid (R-3HB) can be used as an important chiral intermediate in the fine chemical and pharmaceutical industry. In this study, the R-3HB biosynthesis pathway was successfully constructed when genes of ß-ketothiolase (phaA), acetoacetyl-CoA reductase (phaB) from Ralstonia eutropha, and propionyl-CoA transferases (pct) from Clostridium beijerinckii 8052 were introducedinto Escherichia coli. The effects of host E. coli strains, different propionyl-CoA transferases, and post-induction temperatures were investigated. The final concentration of R-3HB reached 0.86 g/L using acetate as the sole carbon source. Subsequently, a kind of culture broth containing the syngas-derived acetate was used to produce 1.02 g/L of R-3HB with a yield of 0.26 g/g. Inthis study, the engineered E. coli strain could efficiently utilize syngas-derived acetate to synthesize R-3HB.


Asunto(s)
Cupriavidus necator , Escherichia coli , Ácido 3-Hidroxibutírico , Acetatos , Escherichia coli/genética , Hidroxibutiratos , Poliésteres
11.
Bioresour Bioprocess ; 8(1): 106, 2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-38650297

RESUMEN

Due to the increasing environmental pollution of un-degradable plastics and the consumption of non-renewable resources, more attention has been attracted by new bio-degradable/based polymers produced from renewable resources. Polylactic acid (PLA) is one of the most representative bio-based materials, with obvious advantages and disadvantages, and has a wide range of applications in industry, medicine, and research. By copolymerizing to make up for its deficiencies, the obtained copolymers have more excellent properties. The development of a one-step microbial metabolism production process of the lactate (LA)-based copolymers overcomes the inherent shortcomings in the traditional chemical synthesis process. The most common lactate-based copolymer is poly(lactate-co-3-hydroxybutyrate) [P(LA-co-3HB)], within which the difference of LA monomer fraction will cause the change in the material properties. It is necessary to regulate LA monomer fraction by appropriate methods. Based on synthetic biology and systems metabolic engineering, this review mainly focus on how did the different production strategies (such as enzyme engineering, fermentation engineering, etc.) of P(LA-co-3HB) optimize the chassis cells to efficiently produce it. In addition, the metabolic engineering strategies of some other lactate-based copolymers are also introduced in this article. These studies would facilitate to expand the application fields of the corresponding materials.

12.
Appl Microbiol Biotechnol ; 103(23-24): 9643-9657, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31686149

RESUMEN

The focus of this study was to investigate the effects of luxS, a key regulatory gene of the autoinducer-2 (AI-2) quorum sensing (QS) system, on the biofilm formation and biocontrol efficacy against Ralstonia solanacearum by Paenibacillus polymyxa HY96-2. luxS mutants were constructed and assayed for biofilm formation of the wild-type (WT) strain and luxS mutants of P. polymyxa HY96-2 in vitro and in vivo. The results showed that luxS positively regulated the biofilm formation of HY96-2. Greenhouse experiments of tomato bacterial wilt found that from the early stage to late stage postinoculation, the biocontrol efficacy of the luxS deletion strain was the lowest with 50.70 ± 1.39% in the late stage. However, the luxS overexpression strain had the highest biocontrol efficacy with 75.66 ± 1.94% in the late stage. The complementation of luxS could restore the biocontrol efficacy of the luxS deletion strain with 69.84 ± 1.09% in the late stage, which was higher than that of the WT strain with 65.94 ± 2.73%. Therefore, we deduced that luxS could promote the biofilm formation of P. polymyxa HY96-2 and further promoted its biocontrol efficacy against R. solanacearum.


Asunto(s)
Proteínas Bacterianas/genética , Biopelículas/crecimiento & desarrollo , Liasas de Carbono-Azufre/genética , Paenibacillus polymyxa/fisiología , Enfermedades de las Plantas/prevención & control , Ralstonia solanacearum/patogenicidad , Solanum lycopersicum/microbiología , Agentes de Control Biológico , Regulación Bacteriana de la Expresión Génica , Paenibacillus polymyxa/genética , Enfermedades de las Plantas/microbiología , Percepción de Quorum
13.
Front Microbiol ; 9: 1520, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30050512

RESUMEN

Paenibacillus polymyxa (formerly known as Bacillus polymyxa) has been extensively studied for agricultural applications as a plant-growth-promoting rhizobacterium and is also an important biocontrol agent. Our team has developed the P. polymyxa strain HY96-2 from the tomato rhizosphere as the first microbial biopesticide based on P. polymyxa for controlling plant diseases around the world, leading to the commercialization of this microbial biopesticide in China. However, further research is essential for understanding its precise biocontrol mechanisms. In this paper, we report the complete genome sequence of HY96-2 and the results of a comparative genomic analysis between different P. polymyxa strains. The complete genome size of HY96-2 was found to be 5.75 Mb and 5207 coding sequences were predicted. HY96-2 was compared with seven other P. polymyxa strains for which complete genome sequences have been published, using phylogenetic tree, pan-genome, and nucleic acid co-linearity analysis. In addition, the genes and gene clusters involved in biofilm formation, antibiotic synthesis, and systemic resistance inducer production were compared between strain HY96-2 and two other strains, namely, SC2 and E681. The results revealed that all three of the P. polymyxa strains have the ability to control plant diseases via the mechanisms of colonization (biofilm formation), antagonism (antibiotic production), and induced resistance (systemic resistance inducer production). However, the variation of the corresponding genes or gene clusters between the three strains may lead to different antimicrobial spectra and biocontrol efficacies. Two possible pathways of biofilm formation in P. polymyxa were reported for the first time after searching the KEGG database. This study provides a scientific basis for the further optimization of the field applications and quality standards of industrial microbial biopesticides based on HY96-2. It may also serve as a reference for studying the differences in antimicrobial spectra and biocontrol capability between different biocontrol agents.

14.
Sheng Wu Gong Cheng Xue Bao ; 32(11): 1549-1563, 2016 Nov 25.
Artículo en Chino | MEDLINE | ID: mdl-29034625

RESUMEN

This research was aimed at establishing the pilot-scale purification technology of lipopeptide from marine-derived Bacillus marinus. We studied lipopeptide surfactivity interferences on scale-up unit technologies including acid precipitation, methanol extraction, solvent precipitation, salting out, extraction, silica gel column chromatography and HZ806 macroporous absorption resin column chromatography. Then, the unit technologies were combined in a certain order, to remove the impurities gradually, and to gain purified lipopeptide finally, with high recovery rate throughout the whole process. The novel pilot-scale purification technology could effectively isolate and purify lipopeptide with 87.51% to 100% purity in hectograms from 1 ton of Bacillus marinus B-9987 fermentation broth with more than 81.73% recovery rate. The first practical hectogram production of highly purified lipopeptide derived from Bacillus marinus was achieved. With this new purification method, using complex media became possible in fermentation process to reduce the fermentation cost and scale-up the purification for lipopeptide production. For practicability and economy, foaming problem resulting from massive water evaporation was avoided in this technology.


Asunto(s)
Bacillus/química , Microbiología Industrial , Lipopéptidos/aislamiento & purificación , Cromatografía , Fermentación , Agua de Mar/microbiología , Solventes
15.
Plant Physiol ; 169(4): 2444-61, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26486592

RESUMEN

The ability to rapidly switch the intracellular energy storage form from starch to lipids is an advantageous trait for microalgae feedstock. To probe this mechanism, we sequenced the 56.8-Mbp genome of Chlorella pyrenoidosa FACHB-9, an industrial production strain for protein, starch, and lipids. The genome exhibits positive selection and gene family expansion in lipid and carbohydrate metabolism and genes related to cell cycle and stress response. Moreover, 10 lipid metabolism genes might be originated from bacteria via horizontal gene transfer. Transcriptomic dynamics tracked via messenger RNA sequencing over six time points during metabolic switch from starch-rich heterotrophy to lipid-rich photoautotrophy revealed that under heterotrophy, genes most strongly expressed were from the tricarboxylic acid cycle, respiratory chain, oxidative phosphorylation, gluconeogenesis, glyoxylate cycle, and amino acid metabolisms, whereas those most down-regulated were from fatty acid and oxidative pentose phosphate metabolism. The shift from heterotrophy into photoautotrophy highlights up-regulation of genes from carbon fixation, photosynthesis, fatty acid biosynthesis, the oxidative pentose phosphate pathway, and starch catabolism, which resulted in a marked redirection of metabolism, where the primary carbon source of glycine is no longer supplied to cell building blocks by the tricarboxylic acid cycle and gluconeogenesis, whereas carbon skeletons from photosynthesis and starch degradation may be directly channeled into fatty acid and protein biosynthesis. By establishing the first genetic transformation in industrial oleaginous C. pyrenoidosa, we further showed that overexpression of an NAD(H) kinase from Arabidopsis (Arabidopsis thaliana) increased cellular lipid content by 110.4%, yet without reducing growth rate. These findings provide a foundation for exploiting the metabolic switch in microalgae for improved photosynthetic production of food and fuels.


Asunto(s)
Chlorella/metabolismo , Genómica , Metabolismo de los Lípidos , Almidón/metabolismo , Secuencia de Bases , Metabolismo de los Hidratos de Carbono , Carbono/metabolismo , Chlorella/genética , Ciclo del Ácido Cítrico , Transporte de Electrón , Ácidos Grasos/metabolismo , Procesos Heterotróficos , Datos de Secuencia Molecular , Fosforilación Oxidativa , Fotosíntesis , Análisis de Secuencia de ADN
16.
Appl Microbiol Biotechnol ; 99(5): 2451-62, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25620370

RESUMEN

Biodiesel production by microalgae with photosynthetic CO2 biofixation is thought to be a feasible way in the field of bioenergy and carbon emission reduction. Knowledge of the carbon-concentrating mechanism plays an important role in improving microalgae carbon fixation efficiency. However, little information is available regarding the dramatic changes of cells suffered upon different environmental factors, such as CO2 concentration. The aim of this study was to investigate the growth, lipid accumulation, carbon fixation rate, and carbon metabolism gene expression under different CO2 concentrations in oleaginous Chlorella. It was found that Chlorella pyrenoidosa grew well under CO2 concentrations ranging from 1 to 20 %. The highest biomass and lipid productivity were 4.3 g/L and 107 mg/L/day under 5 % CO2 condition. Switch from high (5 %) to low (0.03 %, air) CO2 concentration showed significant inhibitory effect on growth and CO2 fixation rate. The amount of the saturated fatty acids was increased obviously along with the transition. Low CO2 concentration (0.03 %) was suitable for the accumulation of saturated fatty acids. Reducing the CO2 concentration could significantly decrease the polyunsaturated degree in fatty acids. Moreover, the carbon-concentrating mechanism-related gene expression revealed that most of them, especially CAH2, LCIB, and HLA3, had remarkable change after 1, 4, and 24 h of the transition, which suggests that Chlorella has similar carbon-concentrating mechanism with Chlamydomonas reinhardtii. The findings of the present study revealed that C. pyrenoidosa is an ideal candidate for mitigating CO2 and biodiesel production and is appropriate as a model for mechanism research of carbon sequestration.


Asunto(s)
Dióxido de Carbono/metabolismo , Carbono/metabolismo , Chlorella/crecimiento & desarrollo , Chlorella/metabolismo , Metabolismo de los Lípidos , Biocombustibles , Chlorella/efectos de los fármacos , Chlorella/genética , Perfilación de la Expresión Génica
17.
Wei Sheng Wu Xue Bao ; 45(4): 647-52, 2005 Aug.
Artículo en Chino | MEDLINE | ID: mdl-16245891

RESUMEN

It was briefly described the beneficial and harmful effects of Burkholderia cepacia in agriculture, industry, medical science and environment protection since the bacterium was identified as causal organism of a crop in 1949. The hot-points and problems in research and regulation of the bacterium were discussed and analyzed as well as the research suggestions in China.


Asunto(s)
Burkholderia cepacia/fisiología , Burkholderia cepacia/patogenicidad , Biodegradación Ambiental , Burkholderia cepacia/genética , Burkholderia cepacia/aislamiento & purificación , Infección Hospitalaria/etiología , Control Biológico de Vectores , Desarrollo de la Planta , Plantas/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...